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The compressible Navier–Stokes equations belong to the class of incom-
pletely parabolic systems. The general method developed by Laurence Halp-
ern for deriving artificial boundary conditions for incompletely parabolic
perturbations of hyperbolic systems is applied to the linearized compressible
Navier–Stokes equations to obtain high order artificial boundary conditions
which are valid for small viscosities, high time frequencies and long space
wavelengths. They are implemented in 1D and 2D model problems and
compared to the most commonly used boundary conditions to validate the
approach, based on asymptotic expansions with respect to the viscosity. The
‘‘improved artificial boundary conditions of order (1,1)’’ provide the best
results. Q 1997 Academic Press

1. INTRODUCTION

In order to compute in a bounded region a flow modeled by a problem formulated
on an infinite domain, one often introduces an artificial boundary G and tries to
write on the domain V bounded by G an initial boundary value problem whose
solution is as close as possible of the solution of the original problem. When the
solution of the mixed problem in V coincides with the restriction of the solution
of the Cauchy problem, the boundary G is said to be transparent.

In general, the associated boundary condition, called the transparent boundary
condition, is integral in time and space on the boundary. For obvious numerical
reasons (cpu time and memory requirements), the transparent boundary condition
is often replaced by local approximations, i.e., differential in time and space, the
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artificial boundary conditions. However, computer limitations do not absolutely
necessitate the localization of the transparent (i.e., exact) boundary condition. In
fact, different techniques have been proposed in the literature to effectively imple-
ment in practice the discrete counterparts to the pseudodifferential operators that
are involved in the formulation of the transparent boundary condition on the
continuous level. The corresponding approaches apply to computation of both
inviscid [25–30] and viscous [31–33] flows.

The artificial boundary conditions are required to give rise to well-posed mixed
problems whose solutions are ‘‘good’’ approximations of the initial problem, thus
allowing us to place the artificial boundaries as close as possible to the region of
interest. Up to now, the most employed method consists in putting the artificial
boundary away of the boundary layer and in writing artificial boundary conditions
for the compressible unsteady Euler equations. The subsonic case appears to be
the most interesting because in 2D, for example, three conditions have to be specified
at inflow and one at outflow, whereas in the supersonic case all the variables must
be specified at inflow and none at outflow.

Two approaches can be distinguished: the linear treatment and the nonlinear
treatment. In the linear treatment, the solution outside the artificial boundary is
assumed to be a perturbation of a smooth steady state (often constant) about
which the equations are linearized. The derivation and the analysis of the artificial
boundary conditions are then performed on the linear equations.

Stable boundary conditions are obtained by setting the incoming characteristic
variables to zero [16]. Greater accuracy can be achieved through the methods
described in [7], where the transparent boundary condition is approximated for
waves with normal incidence and high time frequency and in [2] where a far-field
approximation of the Green function is used. In both cases, the resulting boundary
conditions are differential in time and space and are analyzed by means of the
‘‘normal mode analysis.’’

In the nonlinear treatment, a reasoning on the characteristics [12, 22] provides
boundary conditions that are also differential in time and space.

It is well known that the Navier–Stokes equations need more boundary conditions
than the Euler equations. Moreover, for slightly viscous flows, the Navier–Stokes
equations may be regarded as a perturbation of the Euler equations. In [16], Oliger
and Sundström proposed adding extra boundary conditions to those obtained for
the Euler equations. In [8], Gustafsson and Sundström complete the boundary
conditions for the Euler equations with relations involving normal derivatives and
making the energy decrease.

More recently, Abarbanel, Bayliss, and Lustman [1] directly worked on the
Navier–Stokes equations, splitting the boundary layer solution into modes and
approximating it for low spatial frequencies and under the assumption of small
viscosity, already used successfully in [9] for the advection diffusion equation and
in [11] for the incompressible Navier–Stokes equations.

In practice, steady flows are computed either by solving the steady equations or
by using the pseudo-unsteady approach. In this case, the static pressure is often
prescribed at a subsonic outflow but such a boundary condition is known to consider-
ably slow down the convergence to steady state by reflecting spurious waves toward
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the interior of the computational domain. Rudy and Strikwerda have compared in
[20] several boundary conditions for the Euler equations in the case of the flow
over a flat plate in order to improve the convergence to steady state. They have
also proposed in [19] a nonreflecting condition for subsonic outflow boundaries.

The works of Hagström [34] and of Abarbanel et al. [37], Don and Gottlieb [36],
Poinsot and Lele [18] on artificial boundary conditions for fluid flow problems are
particularly relevant. See also [35].

The compressible Navier–Stokes equations belong to the class of incompletely
parabolic equations.

Laurence Halpern has developed in [10] a general method for deriving artificial
boundary conditions for incompletely parabolic perturbations of hyperbolic systems,
using the Fourier and Laplace transforms as essential tools after the equations have
been linearized about a constant state. The artificial boundary conditions developed
herein are valid under the assumptions of small viscosities, high time frequencies,
and long space wavelengths.

This method has been applied in [23] to the compressible Navier–Stokes equa-
tions, linearized about a constant state, to obtain high order artificial boundary
conditions. They have then been implemented and compared, in 1D and 2D model
problems, to the most commonly used boundary conditions in order to validate the
approach, based on asymptotic expansions with respect to the viscosity.

This article presents the main results of the work reported in Ref. [23] in which
the interested reader will find more details. In Section 2, we recall the general
method developed in [10] to derive artificial boundary conditions for incompletely
parabolic perturbations of hyperbolic systems. In Section 3, this method is applied
to the 2D compressible Navier–Stokes equations, linearized about a constant state,
to derive a hierarchy of artificial boundary conditions. In Section 4, a 1D test case
allows for a rigorous study of the approximation with respect to the kinematic
viscosity n, whereas in Section 5, we analyze the effects of approximating the
transparent boundary condition with respect to the second parameter « 5 ih/s
through a 2D model problem.

2. THE GENERAL METHOD

In this part, we recall the general method developed in [10] to derive artificial
boundary conditions for incompletely parabolic perturbations of hyperbolic systems.
For details, see [10, 21].

2.1. The Problem to Be Solved

We consider the system of linear PDEs with constant coefficients

u
t

5 ON
j51

A( j) u
xj

1 n ON
j,k51

P( j,k) 2u
xjxk

1 F, where u(x, t) [ Rn. (2.1)
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The P( j,k) matrices have the form

P( j,k) 5SP( j,k) 0

0 0
D ,

the block P( j,k) 5 P(k,j) being invertible, with rank P( j,k) 5 r.
The A( j) matrices admit an analogous decomposition

A( j) 5SA( j)
11 A( j)

12

A( j)
21 A( j)

22
D

We also assume the operators



t
2 ON

j51
A( j) 

xj
,



t
2 ON

j51
A( j)

22


xj
,



t
2 n ON

j,k51
P( j,k) 2

xjxk

to be hyperbolic, strictly hyperbolic, and Petrovskii parabolic, respectively.
Under these assumptions, the Cauchy problem associated to (2.1) can be shown

to be well posed (see [21]).
The matrix A(1) is assumed to be nonsingular. Its eingenvalues will be denoted

l1 , ..., ln , with l1 , ..., lm , 0 and lm11 , ..., ln . 0. The corresponding eingenvectors
will be denoted L1, ..., Ln. For the sake of simplicity, we suppose that A(1)

22 is a
diagonal matrix with p negative eigenvalues.

Finally, we assume that the symbol

Q(ij; n) 5 ON
j51

A( j)jj 2 n ON
j,k51

P( j,k)jjjk (2.2)

of the operator

Q 5 ON
j51

A( j) 

xj
1 n ON

j,k51
P( j,k) 2

xjxk
(2.3)

is diagonalizable under a transformation analytic in j.

Remark 2.1. All the above assumptions are fulfilled by the compressible Navier–
Stokes equations when linearized about a constant state. The left half-space hx [

RN; x1 , 0j will be denoted RN
2 . We intend to write a boundary condition on G 5

(RN
2 ), guaranteeing that the solution of the associated mixed problem in RN

2 is the
restriction to RN

2 of the solution of the Cauchy problem, the so-called transparent
boundary condition.
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2.2. The Transmission Conditions

We consider the Cauchy problem

5u
t

5 ON
j51

A( j) u
xj

1 n ON
j,k51

P( j,k) 2u
xjxk

1 F, x [ RN, t . 0,

u(., 0) 5 u0

(2.4)

where F and u0 have compact support in the left-half space.
A variational formulation shows (see [10]) that u satisfies (2.4) if and only if its

restrictions u2 and u1 to the left and right half-spaces, respectively, solve

5u2

t
2 Qu2 5 F, x [ RN

2 , t . 0,

u2(., 0) 5 u0

and

5u1

t
2 Qu1 5 0, x [ RN

1 , t . 0,

u1(., 0) 5 0

with the transmission boundary conditions through G

ON
j51

P( j,1) u2I

xj
5 ON

j51
P( j,1) u1I

xj
. (2.5)

u2 5 u1 (2.6)

uI denotes the vector formed with the first r components of u.

2.3. The Transparent Boundary Condition and the Method of Approximation

By use of the transmission condition (2.6), it is possible to explicitly express u1

as a function of u2. Introducing this expression in (2.5), we obtain the transparent
boundary condition. More precisely, let us consider the initial boundary value
problem on RN

1 :

u1

t
2 Qu1 5 0, x [ RN

1 , t . 0,

u1(., 0) 5 0

1
u1

1

.

..

u1
r1p
25 1

u2
1

.

..

u2
r1p
2 , x [ G, t . 0.5
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The solution of this strongly well-posed problem reads (see [10])

`
u1(x1 , h, s) 5 Or1p

i51
liejix1Fi,

(2.7)

where
`
u1(x1 , h, s) is the Fourier–Laplace transform of u1(x1 , ., .) at (h, s), with

Re(s) . 0, variables h and s corresponding to y 5 (x2 , ..., xN) and t, respectively.
(ji , Fi) is the solution of

(Q(j, ih; n) 2 sI)F 5 0 (2.8)

with Re(ji) , 0.
As a matter of fact, it can be shown when Re(s) . 0 that among the n 1 r

solutions j of (2.8), r 1 p have a strictly negative real part, while the n 2 p left
have a strictly positive real part (see [10]).

The general solution of the Fourier–Laplace transform of u1/t 2 Qu1 5 0 with
respect to y and t reads

`
u1 5 O liejix1Fi,

where (ji , Fi) are given by (2.8), since we have supposed that the symbol of Q was
diagonalizable. In order for

`
u1 to be in L2, the coefficient li must vanish when

Re(ji) $ 0 and we obtain the expression in (2.7).
For (j, F) verifying (2.8), j and F will be denoted from now on as the ‘‘generalized

eigenvalue’’ and ‘‘generalized eigenvector’’ (associated to the generalized eigen-
value j), respectively. The generalized eigenvalues and eigenvectors are functions
of h, s, and n.

The transparent boundary condition on G for the negative half-space reads:

n
dûI

dx1
5 Or1p

j51
ûj Or1p

i51
njiM21

i j Fi I
(2.9)

ûk 5 Or1p

j51
ûj Or1p

i51
M21

i j Fi
k, k 5 r 1 p 1 1, ..., n. (2.10)

The (r 1 p, r 1 p) matrix M is defined by

Mij 5 F j
i (2.11)

and M 21 is the inverse of M. For the sake of simplicity, the notation M 21
ij is used

instead of (M 21)ij for the entrees of M 21 since the inverse entrees of the matrix M
are never used.

As we have assumed that the symbol of Q was diagonalizable, M is a nonsingular
matrix and the li’s are given by the boundary conditions or1p

i51 liF
i
j 5 ûj , j 5 1, ...,

r 1 p: li 5 or1p
j51 M 21

ij ûj .
It contains n 2 p scalar conditions, where n is the number of unknowns and p

is the number of negative eigenvalues of A(1)
22 . As the general eigenvalues and
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eigenvectors are nonrational functions of h and s, the transparent boundary condi-
tion is integral with respect to y and t.

We assume from now on that n ! 1. At first, the transparent boundary condition
is approximated with respect to the parameter n through asymptotic expansions of
the generalised eigenvalues and eigenvectors (when Re s . 0, it can be shown that
r generalized eigenvalues tend to infinity as 1/n, the other having a finite limit. That
is why condition (2.9) contains n ji , instead of ji , in order for expression or1p

j51 ûj

or1p
i51 ji M 21

ij FiI
to have a regular asymptotic behaviour when n tends to 0). We thus

obtain a condition that remains integral with respect to time and space, but which
can be made differential following the lines drawn by Engquist and Majda in
[7] for hyperbolic problems that consist in asymptotic expansions with respect to
ih/s ! 1.

3. APPLICATION TO THE LINEARIZED COMPRESSIBLE NAVIER–STOKES
EQUATIONS IN TWO SPACE DIMENSIONS

In two space dimensions, the compressible Navier–Stokes equations read

r
dVi

dt
5 2

p
xi

1 e O2
j51



xj
SVi

xj
1

Vj

xi
2

2
3

dij div VD, i 5 1, 2 (3.1)

r
d(CvT)

dt
5 2p div V 1 e O2

j51
SVi

xj
1

Vj

xi
2

2
3

dij div VD1 O2
i51



xi
Sk

T
xi
D (3.2)

dr

dt
5 2 p div V, (3.3)

where d/dt is the advection operator, /t 1 V1 (/x1 ) 1 V2 (/x2 ), r, V1 , V2 , p,
T, e, and k denote the density, the components of the velocity vector V, the pressure,
the temperature, the viscosity, and the thermal conductivity, respectively. We have
assumed 3l 1 2e 5 0 (Stokes’ hypothesis). Pressure, density, and temperature are
related through the state equation for an ideal gas p 5 rRT with R the Mayer’s con-
stant.

We assume the flow in the positive half-space to be a small perturbation of a
constant state (V, T , r):

V 5 V 1 Ṽ

T 5 T 1 T̃

r 5 r 1 r̃.

Linearizing (3.1), (3.2), and (3.3) around (V, T , r), we obtain the incompletely
parabolic system,

u
t

5 A(1) u
x1

1 A(2) u
x2

1 n O2
j,k51

P j,k 2u
xj xk

, (3.4)
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where u 5 (Ṽ1 , Ṽ2 , T̃, r̃/r)t, n 5 e/r and

A(1) 5 1
2V 1 0 2R 2RT

0 2V1 0 0

2(c 2 1)T 0 2V 1 0

21 0 0 2V1

2
A(2) 5 1

2V 2 0 0 0

0 2V2 2R 2RT

0 2(c 2 1)T 2V 2 0

0 21 0 2V2

2
P(1,1) 5 diag(4/3, 1, c/Pr, 0), P(2,2) 5 diag(1, 4/3, c/Pr, 0)

P(1,2) 5 P(2,1) 5 1
0 1/6 0 0

1/6 0 0 0

0 0 0 0

0 0 0 0
2 .

As matrix A(1)
22 (see 2.1) reduces to (2V 1 ), the number of boundary conditions is

three for an outflow boundary (V 1 . 0) and four for an inflow boundary (V 1 , 0).
If we multiply matrix Q(j, ih; n) 2 sI by n, we get n[Q(j, ih; n) 2 sI ] 5

Q(z, ns«; 1) 2 nsI with z 5 nj and « 5 ih/s. In the sequel, z will (abusively) be
referred to as a ‘‘generalized eigenvalue.’’

In order to approximate the transparent boundary condition, each generalized
eigenvalue z and its related generalized eigenvector F will be expanded to the
order on with respect to parameter n. Each term of this development will in turn
be approximated to the order o« with respect to «. The resulting boundary conditions
will be denoted ‘‘artificial boundary conditions of order (on , o« ).’’ Their expression
will be given in both cases (on , o« ) 5 (1, 0) and (1, 1).

3.1. Generalized Eigenvalues and Eigenvectors

We use the notations

z 5 z0 1 nz1 1 n 2z2 1 O (n3) (3.5)

F 5 F0 1 nF1 1 O(n2 ), (3.6)

where z0 , z1 , z2 , F0 , and F1 are functions of s and «.
Substituting expansion (3.5) in the expression of matrix Q(z, «ns; 1) gives

Q(z, «ns; 1) 2 nsI 5 x0 (A(1) 1 x0 P(1,1)) 1 ns [x1 (A(1) 1 2x0 P(1,1))

1 «(A(2) 1 2x0 P(1,2)) 2 I ] 1 n 2s2[x2(A(1) 1 2x0P(1,1))

1 x2
1(P(1,1) 1 2«x1 P(1,2)) 1 «2P(2,2)] 1 O(n3),

where xi 5 zi/si, i 5 0, 1, 2 (in si, i is a power and not a superscript).
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Making n tend to zero in equation det[Q(z, ns«; 1) 2 nsI ] 5 0, we obtain, by
continuity with respect to n : x4

0 det(A(1) 1 x0 P(1,1)) 5 0. Thus, we have to distinguish
the bounded generalized eigenvalues (x0 5 0) from those tending to infinity as 1/n.

We obtain the asymptotic expansions

z (1) 5
ns

2V1 2 C
(1 1 «V2 ) 1

(ns)2

2(V1 2 C)3 S4
3

1
c 2 1

Pr D (1 1 2«V2 ) 1 O(n 3) 1 O(«2)

(3.7)

z (2) 5
ns

2V1
(1 1 «V2 ) 1

(ns)2

V1
3 (1 1 2«V2 ) 1 O(n 3) 1 O(«2) (3.8)

z (3) 5
ns

2V1
(1 1 «V2 ) 1

(ns)2

PrV 3
1

(1 1 2«V2 ) 1 O(n 3) 1 O(«2) (3.9)

z (4) 5
ns

2V1 1 C
(1 1 «V2 ) 1

(ns)2

2(V1 2 C)3 S4
3

1
c 2 1

Pr D1 O(n 3) 1 O(«2) (3.10)

for the generalized eigenvalues z such that x0 5 0,

F1 51
C

0

(c 2 1)T

1
21 « C(2V 1 2 C)1

0

1

0

0
21 ns

1
V 1 1 C1

4
3

1
c 2 1

Pr
2

0

c(c 2 1)T
Pr C

0

2
1 ns«

1
V 1 1 C12

4
3

1
c 2 1

Pr
2

V 2

4
3

1
c 2 1

Pr
2

(V 1 1 2C)

c(c 2 1)T
Pr C

V 2

0

21 O(n2) 1 O(«2) (3.11)

F2 51
0

1

0

0
21 «V11

1

0

0

0
21 ns0 1 ns«

V 2
1 1 C 2

V1 C 2 1
1

0

0

0
21 O(n2) 1 O(«2) (3.12)

F3 51
0

0

T

21
21 «0 1 ns

21
Pr V11

1

0

0

0
21 ns«

2V 2

V 1 Pr1
1

0

0

0
21 O(n2) 1 O(«2) (3.13)
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F4 51
C

0

2(c 2 1)T

21
21 «C(2V 1 1 C)1

0

1

0

0
21 ns

1
V 1 2 C12

4
3

1
c 2 1

Pr
2

0

c(c 2 1)T
Pr C

0

2
1 ns«

1
V 1 2 C1

2

4
3

1
c 2 1

Pr
2

V 2

4
3

1
c 2 1

Pr
2

(V 1 2 2C)

c(c 2 1)T
Pr C

V 2

0

21 O(n2) 1 O(«2) (3.14)

for the corresponding generalized eigenvectors F, with C 5 (cRT)1/2 (linearized
sound speed),

z (5) 5 u1 1
ns
u1

14
3

1

c 1
C 2

V 2
1

Pr
2 u1 2 2V1

4
3

c
Pr

(u1 2 u2 )
(1 1 «V2 ) 1 O«(n 2) (3.15)

z (6) 5 u2 1
ns
u2

14
3

1

c 1
C 2

V 2
1

Pr
2 u2 2 2V1

4
3

c
Pr

(u2 2 u1 )
(1 1 «V2 ) 1 O«(n 2) (3.16)

z (7) 5 V1 1
ns
V1

(1 1 «V2 ) 1 O«(n 2) (3.17)

for the generalized eigenvalues z, such that x0 ? 0 and

F5 51
V1

0

U1

21
21 ns

1
u1 V11U1

0

0

4
3

(u1 1 u2 ) 2 2V1

4
3

(u1 2 u2)

1

2 (1 1 «V2 ) 1 O«(n 2) (3.18)
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F6 51
V1

0

U2

21
21 ns

1
u2 V11U2

0

0

4
3

(u1 1 u2 ) 2 2V1

4
3

(u2 2 u1)

1

2 (1 1 «V2 ) 1 O«(n 2) (3.19)

F7 5 1
0

1

0

0
21 ns« 1

2
1

V1

0

0

0
21 O«(n 2) (3.20)

for the associated generalized eigenvectors F. The derivation of expansions (3.7)–
(3.20) is delineated in [23].

Remark 3.1. In expansions (3.15)–(3.20) the notation O«(n 2 ) indicates that the
residual is a function of «. u1 and u2 are the roots of the second-order algebraic
equation with respect to u,

2V1 S4
3

u 2 V1D S c
Pr

u 2 V1D2 C2 S 1
Pr

u 2 V1D5 0 (3.21)

with convention u1 , u2 and Uj , j 5 1, 2, is defined by

Uj 5
(c 2 1)TV1

c
Pr

uj 2 V1

.

It is shown in [23] that Eq. (3.21) always admits two distinct real roots.
We are now able to derive the artificial boundary conditions of order (1, 0) and

(1, 1).

3.2. General Rules for the Derivation of the Artificial Boundary Conditions

We introduce the (r 1 p, r 1 p) matrices M00 , M01 , M10 , and M11 defined as

(M00)ij 5 (C j
00 )i , (M01)ij 5 (C j

01 )i , (M10)ij 5 (C j
10 )i ,

(M11)ij 5 (C j
11 )i , (Cj 5 F j/s j ).

In the notation Cab , the subscripts a and b are the orders with respect to n and
«, respectively.
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Matrix M defined by (2.11) then has the asymptotic expansion

M 5 M00 1 «M01 1 ns(M10 1 «M11 ) 1 O(n2 ) 1 O(«2 ).

For its inverse, we have M 21 5 (M 21)00 1 «(M 21 )01 1 ns[(M 21)10 1 «(M 21 )11)] 1

O(n2) 1 O(«2) with

(M 21 )00 5 M 21
00 , (M 21)01 5 2M 21

00 M01 M 21
00 , (M 21)10 5 2M21

00 M10 M 21
00 ,

(M 21)11 5 M 21
00 (M01 M 21

00 M10 1 M10 M 21
00 M01 2 M11 ) M 21

00 .

For a bounded generalized eigenvalue zi , as (zi )0 5 0 we have

zi M 21
ij Fi I

5 ns(zi )10(M 21
ij )00Fi I

00 1 ns«[(zi)11 (M 21
ij )00Fi I

00

1 (zi)10 (M 21
ij )01F

i I

00 1 (zi)10 (M 21
ij )00F

i I

01] 1 O(n 2) 1 O(«2) (3.22)

and

M 21
ij Fi

k 5 (M 21
ij )00(Fi

k )00

1 «[(M 21
ij )01 (Fi

k )00 1 (M 21
ij )00(Fi

k )01]

1 ns[(M 21
ij )10(Fi

k )00 1 (M 21
ij )00(Fi

k )10]

1 ns«[(M 21
ij )11(Fi

k )00 1 (M 21
ij )00(Fi

k )11

(3.23)1 (M 21
ij )10(Fi

k )01 1 (M 21
ij )01(Fi

k )10]O(n 2) 1 O(«2 )

whereas for an unbounded generalized eigenvalue zi , we have

zi M 21
ij FiI

5 (zi)0(M 21
ij )00F

iI

0 1 «(zi)0(M 21
ij )01F

iI

0

1 ns[(zi)0(M 21
ij )00F

iI

0 1 (zi)0(M 21
ij )10F

iI

0 1 (zi)0(M 21
ij )10F

iI

10]

1 ns«[(zi)11(M 21
ij )00F

iI

0 1 (zi)0(M 21
ij )11F

iI

0 1 (zi)0(M 21
ij )00F

i
11

(3.24)1 (zi)10(M 21
ij )01F

iI

0 1 (zi)0(M 21
ij )01F

iI

10] 1 O(n 2) 1 O(«2)

and

M 21
ij Fi

k 5 (M 21
ij )00(Fi

k )0 1 «(M 21
ij )01 (Fi

k )0

1 ns[(M 21
ij )10(Fi

k )0 1 (M 21
ij )00(Fi

k )10]

1 ns«[(M 21
ij )11(Fi

k )0 1 (M 21
ij )00(Fi

k )11 1 (M 21
ij )01(Fi

k )10]

(3.25)1 O(n 2) 1 O(«2 ).

Let A be the (r, r 1 p) matrix with jth column given by or1p
i51 zi M 21

ij FiI
and B (if it
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exists) the (n 2 (r 1 p), r 1 p) matrix whose jth column is expressed by

or1p
i51 M 21

ij 1
Fi

r1p11

.

..

Fi
n
2. To formulas (3.22)–(3.25) correspond the derivations

A 5 A00 1 «A01 1 nsA10 1 ns«A11 1 O(n2) 1 O(«2)

B 5 B00 1 «B01 1 nsB10 1 ns«B11 1 O(n 2) 1 O(«2).

In Sections 3.3 and 3.4, we will consider four cases:

* Supersonic inflow (V1 , 2C). p 5 0, r 1 p 5 3, u1 , u2 , 0. The generalized
eigenvalues zi , i 5 1, ..., r 1 p are given by expansions (3.15), (3.16), and (3.17),
respectively.

* Subsonic inflow (2C , V1 , 0). p 5 0, r 1 p 5 3, u1 , 0 , u2. The generalized
eigenvalues zi , i 5 1, ..., r 1 p are given by expansions (3.7), (3.15), and (3.17), respec-
tively.

* Subsonic outflow (0 , V1 , C). p 5 1, r 1 p 5 4, u1 , 0 , u2. The generalized
eigenvalues zi , i 5 1, ..., r 1 p are given by expansions (3.7), (3.8), (3.9), and
(3.15), respectively.

* Supersonic outflow (C , V1). p 5 1, r 1 p 5 4, 0 , u1 , u2. The generalized
eigenvalues zi , i 5 1, ..., r 1 p are given by expansions (3.7), (3.8), (3.9), and
(3.10), respectively.

For an inflow boundary (V1 , 0), A is a (3, 3) matrix and B is a (1, 3) matrix. In
terms of Fourier–Laplace variables, the artificial boundary conditions have the
general form

n
d

dx1 1
Ṽ̂1

Ṽ̂2

T̃̂
25 (A00 1 ns A10) 1

Ṽ̂1

Ṽ̂2

T̃̂
2

(3.26)

r̃̂

r
5 (B00 1 ns B10) 1

Ṽ̂1

Ṽ̂2

T̃̂
2

for the order (1, 0),

n
d

dx1 1
Ṽ̂1

Ṽ̂2

T̃̂
25 (A00 1 « A01 1 ns A10 1 ns« A11) 1

Ṽ̂1

Ṽ̂2

T̃̂
2

(3.27)

r̃̂

r
5 (B00 1 « B01 1 ns B10 1 ns« B11) 1

Ṽ̂1

Ṽ̂2

T̃̂
2

for the order (1, 1).
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For an outflow boundary (V1 . 0), A is a (3, 4) matrix and B does not exist. The
artificial boundary conditions have the general form

n
d

dx1 1
Ṽ̂1

Ṽ̂2

T̃̂
25 (A00 1 ns A10) 1

Ṽ̂1

Ṽ̂2

T̃̂

r̃̂/r
2 (3.28)

for the order (1, 0) and

n
d

dx1 1
Ṽ̂1

Ṽ̂2

T̃̂
25 (A00 1 « A01 1 ns A10 1 ns« A11) 1

Ṽ̂1

Ṽ̂2

T̃̂

r̃̂/r
2 (3.29)

for the order (1, 1).

3.3. Artificial Boundary Conditions of Order (1, 0)

For an inflow boundary, an inverse Fourier–Laplace transform of conditions
(3.26) gives

n


x1 1
Ṽ1

Ṽ2

T̃
25 SA00 1 n A10



tD 1
Ṽ1

Ṽ2

T̃
2

r̃

r
5 SB00 1 n B10



tD 1
Ṽ1

Ṽ2

T̃
2,

whereas for an outflow boundary, we obtain

n


x1 1
Ṽ1

Ṽ2

T̃
25 SA00 1 n A10



tD 1
Ṽ1

Ṽ2

T̃

r̃/r
2.
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3.4. Artificial Boundary Conditions of Order (1, 1)

If the ith line of matrix A01 is not equal to zero, the corresponding boundary
condition has to be multiplied by s before applying the inverse Fourier–Laplace
transform and we get

n
2

x1t
ui 5 F(Ai.)00



t
1 (Ai.)01



x2
1 n(Ai.)10

2

t2 1 n(Ai.)11
2

x2tG 1
Ṽ1

Ṽ2

T̃
2

for an inflow boundary,

n
2

x1t
ui 5 F(Ai.)00



t
1 (Ai.)01



x2
1 n(Ai.)10

2

t2 1 n(Ai.)11
2

x2tG 1
Ṽ1

Ṽ2

T̃

r̃/r
2

for an outflow boundary.
If the ith line of matrix A01 is equal to zero, we simply get

n


x1
ui 5 F(Ai.)00 1 n(Ai.)10



t
1 n(Ai.)11



x2
G 1

Ṽ1

Ṽ2

T̃
2

for an inflow boundary,

n


x1
ui 5 F(Ai.)00 1 n(Ai.)10



t
1 n(Ai.)11



x2
G 1

Ṽ1

Ṽ2

T̃

r̃/r
2

for an outflow boundary.
In the same way, when matrix B01 is not equal to zero, the hyperbolic condi-

tion reads



t
r̃

r
5 FB00



t
1 B01



x2
1 n B10

2

t2 1 n B11
2

x2tG 1
Ṽ1

Ṽ2

T̃
2,
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else we only have

r̃

r
5 SB00 1 n B10



t
1 n B11



x2
D 1

Ṽ1

Ṽ2

T̃
2.

For the supersonic inflow case A01 5 0 and B01 5 0. For the supersonic outflow
case, A01 5 0. Thus, in the supersonic case, the conditions of order (1, 1) are
obtained by addition of terms in n(/x2) to conditions of order (1, 0).

The expression of the artificial boundary conditions of order (1, 1) is given below
for the two subsonic cases. Because matrices A11 and B11 are very complicated, we
have preferred not to give their expressions. In practice, they are evaluated by the
code using asymptotic expansions (3.22)–(3.25) (see Remark 3.2 below).

* The subsonic inflow case:

n
Ṽ1

x1
5

u1 S c
Pr

u1 2 V1D
c
Pr

u1 2 V1 2 C
SṼ1 2

C
c 2 1

T̃
TD1 n

1
c
Pr

u1 2 V1 2 C



t

3

1
V1 1 C1C 1

u1S c
Pr

u1 2 V1D
c
Pr

u1 2 V1 2 C
3

4
3

2
c 1 1

Pr
2 21Ṽ1 2

c
Pr

u1 2 V1

c 2 1
T̃
T21S c

Pr
u1 2 V1D

114
3

1

c 1
C 2

V 2
1

Pr
2 u1 2 2V1

c
Pr

u1
4
3

(u1 2 u2)
1

C
c
Pr

u1 2 V1 2 C
3

4
3

(u1 1 u2) 2 2V1

4
3

(u1 2 u2)V1
2

SṼ1 2
C

c 2 1
T̃
TD













1 n


x2
[(A11)11Ṽ1 1 (A12)11Ṽ2 1 (A13)11T̃ ]; (3.30a)

n
2Ṽ2

x1t
5 V1

Ṽ2

t
1 n

1
V1

2Ṽ2

t2 1
V1C(V1 1 C)
c
Pr

u1 2 V1 2 C



x2
S2Ṽ1 1

V1

U1
T̃D

1
2

x2t
[(A21)11Ṽ1 1 (A22)11Ṽ2 1 (A23)11T̃ ]; (3.30b)
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n
T̃
x1

5
(c 2 1)Tu1

c
Pr

u1 2 V1 2 C
SṼ1 2

C
c 2 1

T̃
TD1 n

(c 2 1)T
c
Pr

u1 2 V1 2 C



t

3

1
V1 1 C 11 1

u1

c
Pr

u1 2 V1 2 C
3

4
3

2
c 1 1

Pr
2 21Ṽ1 2

c
Pr

u1 2 V1

c 2 1
T̃
T2

1314
3

1

c 1
C2

V2
1

Pr
2 u1 2 2V1

c
Pr

u1
4
3

(u1 2 u2)
1

4
3

(u1 1 u2) 2 2V1

4
3

(u1 2 u2)V1 11 1
C

c
Pr

u1 2 V1 2 C24
SṼ1 2

C
c 2 1

T̃
TD













1 n


x2
[(A31)11Ṽ1 1 (A32)11Ṽ2 1 (A33)11T̃]; (3.30c)

r̃

r
5

2S c
Pr

u1 2 V1D
V1 S c

Pr
u1 2 V1 2 CD1

c
Pr

u1

c
Pr

u1 2 V1

Ṽ1 2
V1 1 C
c 2 1

T̃
T22 n

1

S c
Pr

u1 2 V1 2 CD2



t

35
c
Pr

u1 2 V1

u1 3
4
3

(u1 1 u2) 2 2V1

4
3

(u1 2 u2)V1

S1 1
C
V1
D2

c
Pr

u1 2 V1 2 C

V2
1 4SṼ1 2

C
c 2 1

T̃
TD

1
1

V1 1 C
3S c

Pr
u1 2 V1D1

4
3

2
c 1 1

Pr
2V1

2

c
Pr
C
21

4
3

1
c 2 1

Pr
2

41Ṽ1 2

c
Pr

u1 2 V1

c 2 1
T̃
T26

1 n


x2
[(B11)11Ṽ1 1 (B12)11Ṽ2 1 (B13)11T̃]. (3.30d)

* The subsonic outflow case:

n
2Ṽ1

x1t
5



t HCu1V1

Z Sc
C

Ṽ1 2
T̃
T

2
r̃

r
D1 n

1
TZ



t

353cu1

Z 1 1
Pr

2

4
3

2
c 2 1

Pr
2

V1

V1 1 C22
C

V1 1 C4F(T 2 U1)Ṽ1 1 V1T̃ 1 V1T
r̃

r
G
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1 V1 314
3

1

c 1
C2

V2
1

Pr 2 u1 2 2V1

u1
4
3

c
Pr

(u1 2 u2)
2

c
Pr

u1

ZV1
1

C
V1TZ1U1

4
3

(u1 1 u2) 2 2V1

4
3

(u1 2 u2)
1 T24

FcTṼ1 2 CT̃ 2 CT
r̃

r
G2

c
Pr

T u1
r̃

r
J62

cu1V2
1

Z


x2
Ṽ2

1 n
2

x2t S(A11)11Ṽ1 1 (A12)11Ṽ2 1 (A13)11T̃ 1 (A14)11
r̃

r
G ; (3.31a)

n
Ṽ2

x1
5 2

n
V1

Ṽ2

t
1 n



x2
F(A21)11Ṽ1 1 (A22)11Ṽ2 1 (A23)11T̃ 1 (A24)11

r̃

r
G; (3.31b)

n
2T̃

x1t
5



t HCu1U1

Z Sc
C

Ṽ1 2
T̃
T

2
r̃

r
D1 n

1
TZ



t

353cu1

Z
U1

V1
1 1

Pr
2

V1

V1 1 C
3

4
3

2
c 2 1

Pr
2 2

2 T Sc 2 1
V 1 C

1
1

V1
D4F(T 2 U1)Ṽ1 1 V1T̃ 1 V1T

r̃

r
G

1 5T
V1

1 U1 314
3

1

c 1
C2

V2
1

Pr 2 u1 2 2V1

u1
4
3

c
Pr

(u1 2 u2)
1

1
V1

4
3

(u1 1 u2) 2 2V1

4
3

(u1 2 u2)
2

c
Pr

u1

V1Z

1
C

TZV1 1U1

4
3

(u1 1 u2) 2 2V1

4
3

(u1 2 u2)
1 T246

3 FcTṼ1 2 CT̃ 2 CT
r̃

r
G1

ZT
V1

ST 2
c
Pr

u1U1

Z D r̃

r
J62

cu1V1U1

Z


x2
Ṽ2

1 n
2

x2t F(A31)11Ṽ1 1 (A32)11Ṽ2 1 (A33)11T̃ 1 (A34)11
r̃

r
G. (3.31c)
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Remark 3.2. The expression of matrices A00 , A01 , A10 , B00 , B01 , and B10 is
necessary for the analysis of the well-posedness of the initial boundary value prob-
lems (see [23]) but the use of relations (3.22)–(3.25) considerably simplifies their
implementation and reduces the risks of errors.

3.5. Absorbing Boundary Conditions for the Linearized Compressible
Euler Equations

They have been obtained following the lines drawn by Engquist and Majda in
[7]. It can be easily verified that setting n to 0 in the artificial boundary conditions
of order (1, 0) (resp. (1, 1)) gives the absorbing boundary conditions of order 0
(resp. 1). In this respect, our boundary conditions are continuous in n as n tends
to zero.

—Absorbing boundary conditions of order 0:

*Supersonic inflow,

1
2C

Ṽ1 1
1

2cT
T̃ 1

1
2cr

r̃ 5 0 (3.32a)

Ṽ2 5 0 (3.32b)

1
cT

T̃ 2
c 2 1

cr
r̃ 5 0 (3.32c)

1
2C

Ṽ1 2
1

2cT
T̃ 2

1
2cr

r̃ 5 0 (3.32d)

which is equivalent to Ṽ1 5 Ṽ2 5 T̃ 5 r̃ 5 0;

*Subsonic inflow, (3.32b), (3.32c), (3.32d);

*Subsonic outflow, (3.32d);

*Supersonic outflow, no boundary condition.

—Absorbing boundary conditions of order 1:

*Supersonic inflow, Ṽ1 5 Ṽ2 5 T̃ 5 r̃ 5 0;

*Subsonic inflow, (3.32c)

Ṽ1 2
CT̃

c 2 1 T
5 0 (3.33)



t
Ṽ2 1

C(V1 1 C)
(c 2 1)T



x2
T̃ 5 0; (3.34)

*Subsonic outflow,



t S 1
2C

Ṽ1 2
1

2cT
T̃ 2

1
2cr

r̃D2
V1

2 C


x2
Ṽ2 5 0; (3.35)

*Supersonic outflows, no boundary condition.
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Remark 3.3. The mixed problem associated with the absorbing boundary condi-
tions of order (0, 0) is proved to be well posed by energy estimates in [23] and by
normal mode analysis in [10]. It has been shown in [23] that for the 1D case, the
error between its solution and the restriction to R2 of the solution of the Cauchy
problem tends to 0 as n when n tends to 0. For the absorbing boundary conditions
of order (1, 0) and (1, 1), the associated mixed problems are shown to be well
posed when certain terms are neglected (see [23]).

4. DEPENDENCE WITH RESPECT TO THE VISCOSITY: THE 1D CASE

We have seen in Section 2 that the transparent boundary condition (2.9)–(2.10)
was approximated first with respect to parameter n ! 1 and then with respect to
parameter « 5 ih/s ! 1. The interest of the one-dimensional case is that the absence
of « allows for a rigorous study of the effects of the approximation with respect to n.

4.1. Equations and Boundary Conditions

The equations reduce to

u
t

1 A
u
x

2 n P
2u
x2 5 0 (4.1)

with

u 5 1
Ṽ

T̃

r̃

r
2, A 5 1 V R RT

(c 2 1)T V 0

1 0 V 2, P 5 diag S4
3

,
c
Pr

, 0D.

When n 5 0, Eq. (4.1) expresses the transport of the characteristic variables w
associated to matrix A. Because of their physical meaning, the w variables will be
preferred to the u variables. They are defined by w 5 P 21 u with

P 5 1 C 0 C

(c 2 1)T T 2(c 2 1)T

1 21 21 2, P 21 51
1

2C
1

2cT
1

2c

0
1

cT
2

c 2 1
c

1
2C

2
1

2cT
2

1
2c

2
and are solutions of the equation

w
t

1 L
w
x

2 n B
2w
x2 5 0 (4.2)
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with

L 5 P 21 A P 5 diag(l1 5 V 1 C, l2 5 V, l3 5 V 2 C)

and

B 5 P 21 P P 51
2
3

1
c 2 1
2Pr

1
2Pr

2
3

2
c 2 1
2Pr

c 2 1
Pr

1
Pr

2
c 2 1

Pr

2
3

2
c 2 1
2Pr

2
1

2Pr
2
3

1
c 2 1
2Pr

2 .

The computational domain is the segment [0, 1] and we restrict ourselves to the
case 0 , V , C, where both the inflow and outflow boundaries are of subsonic
type. This case is more complex than the supersonic case C , V because information
(w3) propagates against the flow.

The one-dimensional boundary conditions can be obtained by removing the terms
in Ṽ2 in the corresponding two-dimensional boundary conditions and replacing Ṽ1 ,
V1 , and x1 by Ṽ , V and x, respectively. Their expression in terms of variables w is
given in [23].

The boundary conditions at x 5 0 are derived by replacing x by 2x, V by 2V,
and Ṽ by 2Ṽ in the conditions corresponding to the negative half-space in the
subsonic inflow case. We have three conditions at x 5 0 and two at x 5 1.

The artificial boundary conditions will be compared to the transparent boundary
conditions for the one-dimensional Euler equations: w1 5 w2 5 0 at x 5 0 (two
boundary conditions) and w3 5 0 at x 5 1 (one boundary condition) and to the
Gustafsson and Sundström boundary conditions we recall below. In [8], they used
energy estimates to derive boundary conditions leading to well-posed initial bound-
ary value problems and such that as n tends to 0 the corresponding hyperbolic
problems are also well posed. Their boundary conditions read at x 5 0:

• w1 5 0

• w2 5 0,

n


x FS4
3

2
c 2 1

Pr D w1 2
1

Pr
w2 1 S4

3
1

c 2 1
Pr D w3G5 0;

and at x 5 1:

C w3 1
2
3

n


x
(w1 1 w3) 5 0

n


x
[(c 2 1)(w1 2 w3 ) 1 w2 ] 5 0.

For details, see [8] and also [23].
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4.2. The Numerical Scheme

In order to approximate the hyperbolic part of the equations in the most suitable
way, we have chosen to use the algorithm introduced by Zalesak in [24] for multidi-
mensional nonlinear hyperbolic systems. This algorithm adds corrected antidiffusive
fluxes to the numerical fluxes of a monotonous first-order scheme in such a way
that local extrema are not created nor increased. The first-order scheme is the
explicit upwind scheme and the high order scheme is Lax–Wendroff scheme.

4.3. Discretization of the Artificial Boundary Conditions

The segment [0, 1] is divided into I intervals [xi , xi11 ], 0 # i # I 2 1 with I 5

1/Dx and xi 5 iDx. We have chosen Dx 5 1022, i.e. I 5 100. The scheme is applied
from x0 to xI and we introduce four ficticious points x22 , x21 , xI11 , and xI12 . At
points x21 and xI11 , we apply the scheme with simplified limitation coefficients and
the boundary conditions are discretized at x22 and xI12 .

4.4. The Numerical Boundary Conditions

At x 5 0 (subsonic inflow), the artificial boundary conditions are a number of 3
(see Section 3.2). In all other cases, the number of discretized continuous boundary
conditions is less than or equal to two and it is necessary to introduce extra relations,
the so-called ‘‘numerical boundary conditions,’’ in order to get a system of three
equations for the three unknowns that are components of vector wn11

22 or wn11
112 .

At x22 , since w3 propagates in the negative x direction and since we assume
n ! 1, we use an upwind discretization of advection equation



t
w3 1 (V 2 C)



x
w3 5 0.

At xI12 , we again use upwind discretizations of advection equations



t
w1 1 (V 1 C)



x
w1 5 0, (4.3)



t
w2 1 V



x
w2 5 0. (4.4)

4.5. Numerical Results

We choose V 5 1, r 5 1, and C 5 2 and the classical values c 5 1.4 and Pr 5

0.75. We also take R 5 1 because we assume that the equations have been
nondimensionalized. As C is related to T by C 5 (cRT )1/2, we find T > 2.86. The
flow is subsonic and the characteristic variables w1, w2, and w3 propagate at respec-
tive speeds V 1 C 5 3, V 5 1, V 2 C 5 21.

Each characteristic variable has initial value

f0(x) 5 He1/r2
e1/((x2xC)2

2r2) if ux 2 xCu , r,

0 otherwise;
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FIG. 1. Time-evolution of the (normalized) l 2-norm of the error between the solution of the Cauchy
problem and the solutions of the mixed problems associated to: the artificial boundary conditions of
orders 0 (solid line) and 1 (dashed line), the absorbing boundary conditions for the Euler equations
(dotted line), Gustafsson and Sundström boundary conditions (dot–dashed line) and Rudy and Strik-
werda nonreflecting boundary condition (long-dashed line).

f0 belongs to C y(R) and has compact support in the bowl centered around xc with
radius r. We choose xc 5 As, r 5 Af.

Figure 1 shows the l 2-norm of the error between the solution of the discretized
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Cauchy problem (n 5 0.1) and the solution of the discretized initial boundary value
problems corresponding to the different boundary conditions, divided by the
l 2-norm of the initial value. The solution of the Cauchy problem results from a
computation on an interval [2L, 1 1 L] with L ‘‘sufficiently’’ large (see [23]
for details).

Although Gustafsson and Sundström’s boundary conditions have not been intro-
duced in order to be used as artificial boundary conditions, they give good results.
This is probably due to the fact that they by construction, contain the absorbing
boundary conditions for the Euler equations.

We also introduce the nonreflecting boundary condition of Rudy and Strikwerda.
It is described in detail in [19, 20]. It reads (/t)p 2 rC(/t)V 1 a(p 2 p) 5 0,
the optimal choice for parameter a being

a* 5
C 2 2 V 2

C
(z* 2 1), with z* 5 1.2784645.

It has been introduced for the calculation of steady solutions when using a pseudo-
unsteady approach.

We approximate it at point xI12 by

p̃n11
I12 2 p̃n

I12

Dt
2 rC

Ṽ n11
I12 2 Ṽ n

I12

Dt
1 ap̃n11

I12 5 0 (4.5)

and we complete it according to the strategy proposed in [20]:

—zeroth-order extrapolation of Ṽ

—zeroth-order extrapolation of T̃

—calculation of p̃ by means of (4.5)

—calculation of r̃ using the state law p 1 p̃ 5 (r 1 r̃)R(T 1 T̃).

The artificial boundary conditions of order 1 in n clearly give the lowest level of
the error.

The fact that the artificial boundary conditions of order 0 better approximate
the transparent boundary condition (2.9)–(2.10) with respect to the parameter n is
not clear for t # 0.525. This is certainly due to the numerical boundary conditions.
More precisely, at x 5 xI12, for example, the transparent boundary condition for
the Euler equations w3 5 0 is completed by upwind discretizations of transport
equations (4.3) and (4.4), whereas the two discretized artificial boundary conditions
of order 0 are completed by an upwind discretization of (4.4). The set of the two
artificial boundary conditions of order 0 seems to be less efficient, at least for the
short times, than the one made up of conditions w3 5 0 and (4.3). An explanation
for this phenomenon will be proposed at the end of next section. The error associated
to the artificial boundary conditions of order 1 is the smallest.
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Figure 2 shows the asymptotic behaviour of the error when the parameter n
tends to zero, whereas Fig. 3 indicates how fast the error diminishes. Between
the artificial boundary conditions of order 0 and 1, the slopes have a ratio
greater than 2, and the slope corresponding to the transparent boundary conditions
for the Euler equations is slightly lower than the one related to the conditions
of order 0.

Remark 4.1. In order to maintain negligible numerical damping terms in front
of the physical diffusion terms, an analysis of the differential equation equivalent
to the scheme at first order in time and second order in space shows that we must
ensure n/Dx @ i uLu i/2iBi, where i?i denotes a matrix norm [23].

5. DEPENDENCE WITH RESPECT TO THE ANGLE OF INCIDENCE:
THE 2D CASE

In this section, the effects of approximating the transparent boundary condition
(2.9)–(2.10) with respect to variable « 5 ih/s, will be numerically analyzed through
a model problem. We will work with the physical variables u 5 (V1

p, V2
p, T̃, r̃/r)t

and the space coordinates will be denoted (x, y), instead of (x1 , x2).

5.1. The Model Problem

We want to solve the linearized 2D Navier–Stokes equations on the strip R 3

[0, 1] of xOy plane.
At x 5 0 and at x 5 1, we introduce artificial boundaries where we succes-

sively adopt

—the absorbing boundary conditions of order 0 for the Euler equations,

—the absorbing boundary conditions of order 1 for the Euler equations,

—the absorbing boundary conditions of order (0, 0),

—the absorbing boundary conditions of order (1, 0),

—the absorbing boundary conditions of order (1, 1).

On the north boundary (y 5 1), we impose in all cases the absorbing boundary
conditions of order 0 for the Euler equations. On the south boundary (y 5 0), we
also employ the absorbing boundary conditions of order 0 for the Euler equations
except when V2 5 0 and u(?, t 5 0) is symmetrical with respect to Ox axis which
becomes a symmetry axis.

For quantities V1 , T, r, c, R, and Pr, we keep the values of the previous section.
Moreover, we choose V2 5 0. As V1 , C and V2 , C, the flow is subsonic in each
space direction. The west boundary is of subsonic inflow type, whereas the east
boundary is of subsonic outflow type. Let us introduce the two scalar functions

f0(x, y) 5 5e1/r2
e

1
(x2xC)21(y2yC)22r2, if (x 2 xC)2 1 (y 2 yC)2 , r2

0, otherwise;
(5.1)
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FIG. 3. l 2-norm (space-time) of the error as a function of n for the artificial boundary conditions
of orders 0 (stars) and 1 (circles) and the absorbing boundary conditions for the Euler equations (plus
signs), logarithmic scale. V 5 1, T 5 2.86, r 5 1, c 5 1.4, R 5 1, Pr 5 0.75; NU 5 0.1, DX 5 NU/10;
NU 5 0.05, DX 5 NU/5; NU 5 0.01, DX 5 NU/5; n 5 0.005, Dx 5 NU/5.

g0(x, y) 5 f0(x, y) cos[kx(x 2 xC) 1 ky(y 2 yC)], (5.2)

where f0 is infinitely differentiable and has compact support in the bowl centered
around point (xC , yC) with radius r.
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The initial value is defined by Ṽ2 5 0 and Ṽ1 5 T̃ 5 r̃/r 5 f0 , or Ṽ1 5 T̃ 5

r̃/r 5 g0 . By modifying the direction of wave vector k 5 (kx , ky)t in function g0 ,
we are able to investigate the effects of approximating the transparent boundary
condition with respect to the parameter «.

5.2. Discretization and Numerical Boundary Conditions

As for the 1D case, the Euler equations are approximated with Zalesak’s fully
multidimensional flux corrected transport algorithm [24].

The segment [0, 1] on the Ox axis is divided into I intervals [xi , xi11], 0 # i #

I 2 1 with I 5 1/Dx and xi 5 i Dx, whereas the segment [0, 1] on the Oy axis is
split into J intervals [yj , yj11], 0 # j # J 2 1 with J 5 1/Dy and yj 5 j Dy. We have
chosen Dx 5 Dy 5 2 3 1022, i.e. I 5 J 5 50.

We introduce the ficticious coordinates x22 , x21 , xI11 , xI12 , y22 , y21 , yJ11 , and yJ12

and we apply the scheme at points (xi , yj), 21 # i # I 1 1, 21 # j # J 1 1.
The north boundary is defined by 21 # i # I 1 1 and j 5 J 1 2; the south

boundary is defined by 21 # i # I 1 1 and j 5 22; the west boundary is defined
by i 5 22 and 22 # j # J 1 2; and, finally, the east boundary is defined by i 5

I 1 2 and 22 # j # J 1 2.
The boundary conditions are written at the second rank of fictitious points at

time tn11 .
On the west boundary, for the artificial boundary conditions, x-derivatives are

replaced by first-order forward finite differences, y-derivatives are replaced by
second-order centered finite differences (except for j 5 22 and j 5 J 1 2, where
first-order noncentered finite differences are used) and time derivatives are replaced
by first-order backward finite differences.

On the east boundary, for the artifical boundary conditions, x-derivatives are
approximated by first-order backward finite differences, whereas y- and t-derivatives
are treated in the same way as on the west boundary.

For more details on the discretization of the continuous boundary conditions,
see [23].

As for the 1D case, when the number of continuous boundary conditions is less
than or equal to 3, the discrete boundary conditions resulting from their approxima-
tion have to be completed by numerical boundary conditions in order to get a
system of four equations for the four unknowns that are the components of vector
un11

i, j at a boundary node.
Notice that the problem does not arise at the west boundary for the artificial

boundary conditions that are a number of four. In all other cases, numerical bound-
ary conditions have to be added.

As a general rule, in the interior of east and west boundaries (resp. north and
south), we use the unperturbed (n 5 0) evolution equations of matrix A(1) (resp.
A(2)) characteristic variables that propagate outside the computational domain,
because it is then safe to approximate x 2 (resp. y2) derivatives by finite differences
biased towards the interior of the computational domain. At the north (resp. south)
corners, we try as much as possible to account for the continuous north boundary
conditions (resp. the three continuous south boundary conditions).
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FIG. 4. Initial value f0 given by (5.1).

The derivation of the numerical boundary conditions as well as their efficient
implementation is detailed in [23].

5.3. A First Set of Numerical Results

The initial value is given either by function f0 defined by (5.1) with xc 5 As, yc 5

0, and r 5 Af (Fig. 4), or by function g0 defined by (5.2) with xc 5 As, yc 5 As, r 5 0.45
and uku 5 2f/10 Dx. The angle (Ox, k

`

) between axis and wave vector k having
values 0, f/16, f/8, or f/4. Figure 5 shows function g0 in the case (Ox, k

`

) 5 f/4.
In Fig. 6, we have superimposed, as a function of time, the relative l 2-norm of

the error between the solution of the Cauchy problem and the solutions of the
initial boundary value problems corresponding to the artificial boundary conditions
of order (0, 0), (1, 0), (1, 1) and also to the absorbing boundary conditions of order
0 and 1 for the Euler equations. The initial value is given by function f0 . We obtain
a great improvement when we switch from order (0, 0) to (1, 0). For t # 0.26, the
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FIG. 5. Initial value g0 given by (5.2) in the case (Ox, k
`

) 5 f/4.

conditions of order (1, 1) give the best results but surprisingly, they produce for
t $ 0.29 the greatest error level. This point will be investigated further in 5.4. For
t $ 0.19, the absorbing boundary conditions of order 0 correspond to the greatest
error level whereas for t $ 0.24, the absorbing boundary conditions of order 1
appear to be the best of all.

Figure 7 shows the influence of the angle (Ox, k
`

) in g0 for the artificial boundary
conditions of order (1, 1). For the long times, we see that the error grows with the
angle, what could be expected from a Taylor expansion in the vicinity of « 5

ih/s 5 0.

5.4. Improvement of the Artificial Boundary Conditions of Order (1, 1)

We may think that in the artificial boundary conditions of order (1, 1), the Euler
equations have not been taken into account in an optimal way when approximating
the transparent boundary condition (2.9)–(2.10). It is possible, however, to obtain
an equivalent formulation of condition (2.9) where the Euler part explicitly appears.
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FIG. 6. Time-evolution of the l 2-norm of the error associated to the artificial boundary conditions
of orders (0, 0) (dotted line), (1, 0) (dot-dashed line), (1, 1) (long-dashed line) and to the absorbing
boundary conditions of orders 0 (solid line) and 1 (dashed line) for the Euler equations.

PROPOSITION 5.1. The transparent boundary condition (2.9) is equivalent to

n
d

dx1

`
u2

I(x1 5 0) 5 H(I 2 «nsQ(1, 2))21 Fns(B(1) 1 «B(2) 1 «2nsQ(2,2))
`
u2(x1 5 0)

1 Q(1,1) Or1p

j51
(
`
u2 )j(x1 5 0) Or1p

i51
M21

i j (nji)2FiGJI

(5.3)
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FIG. 7. Time-evolution of the l 2-norm of the error associated to the artificial boundary conditions
of order (1, 1) for (Ox, k

`
) 5 0 (solid line), f/16 (dashed line), f/8 (dotted line), and f/4 (dot-dashed

line) in function g0 .

with

B(1) 5 A(1)21, B(2) 5 2B(1)A(2), Q(1,1) 5 2B(1)P(1,1),

Q(1,2) 5 22B(1)P(1,2), Q(2,2) 5 2B(1)P(2,2).
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The proof of this proposition as well as the expressions of matrices B(1), B(2), Q(1,1),
Q(1,2) 5, and Q(2,2) are given in [23].

Condition (5.3) can then be approximated to the order (1, 1) with respect to
(n, «). In the resulting boundary condition, the terms (B(1)`u2 )I and (B(2)`u2 )I have
not undergone any approximation, which was not the case with the ‘‘old’’ artificial
boundary conditions of order (1, 1). Many more details can be found in [23].

Figure 8 shows that the improved artificial boundary conditions of order (1, 1)
now give the lowest error level.

5.5. Numerical Boundary Conditions: A New Approach

It comes out from Proposition 5.1 that the transparent boundary condition (2.9)
is another formulation for variables V1

p, V2
p, and T̃ evolution equations at x1 5 0.

We have seen in Section 5.2 that in the subsonic outflow case, the three artificial
boundary conditions must be completed by a numerical boundary condition. The
above interpretation naturally suggests the continuity equation. In terms of Fourier–
Lapace variables, it reads

ns Sr̂̃

r
D

2
1 V1n

d
dx1

Sr̂̃

r
D

2
5 2n

d
dx1

(V̂̃1)2 2 «ns F(V̂̃2)2 1 V2 Sr̂̃

r
D

2
G. (5.4)

We can replace n(d/dx1)(V̂̃1)2 using (5.3) and approximate the resulting condition
to the desired order with respect to (n, «). In the subsonic outflow case, V1 . 0
and operator /t 1 V1(/x1) expresses transport of variable r̃/r in the positive
x-direction. Thus, it is quite safe to approach n(d/dx1)(r̂̃/r) by an upwind finite dif-
ference.

It is also possible to generalize the numerical boundary conditions of inviscid
type used so far to the case where n ? 0. Using Eqs. (5.3) and (5.4) and making an
approximation to the order (1, 1) with respect to (n, «), the linearized Navier–Stokes
equations can be written in terms of Fourier–Laplace variables in the general form

n
d

dx1
û(x1 5 0) 2 (B00 1 «B01 1 nsB10 1 ns«B11)û(x1 5 0) 5 0. (5.5)

Multiplying (5.5) on the left by each left eigenvector of matrix A(1) corresponding
to a positive eigenvalue l(1)

i , we obtain boundary conditions in which the normal
derivative of the corresponding characteristic variable wi can safely be approximated
by an upwind finite difference. The expressions of these more rigorous numerical
boundary conditions are given in [23]. Used together with the improved artificial
boundary conditions of order (1, 1), they appeared to give quite good results (Fig.
9). The new approach does not actually provide for any big advantage in terms of
the error reduction, as can be seen by comparing Figs. 8 and 9, but the important
point is that it is much more satisfying from the mathematical point of view.

6. CONCLUSION

High order artificial boundary conditions have been derived for the compressible
Navier–Stokes equations linearized about a constant state using the Fourier and
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FIG. 8. Time-evolution of the l 2-norm of the error associated to the improved artificial boundary
conditions of order (1, 1) (long-dashed line), compared to the artificial boundary conditions of orders
(0, 0) (dotted line) and (1, 0) (dot-dashed line), and the absorbing boundary conditions of order 0 (solid
line) and 1 (dashed line) for the Euler equations.

Laplace transforms and asymptotic expansions under the assumption of small viscos-
ity, high time frequencies and long space wavelengths. They have been implemented
in 1D and 2D model problems and compared to the most commonly used artificial
boundary conditions (absorbing boundary conditions for the Euler equations, Gus-
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FIG. 9. Time-evolution of the l 2-norm of the error associated to the improved artificial boundary
conditions of order (1, 1) for several choices of the ‘‘numerical boundary condition,’’ showing that the
continuity equation (dashed line) performs quite well. Solid line: equation of the characteristic variable
associated to V1 other than Ṽ2 , with n 5 0, dotted line: equation of the characteristic variable associated
to V1 1 C, dot-dashed line: equation of the characteristic variable associated to V1 other than Ṽ2 .

tafsson and Sundström dissipative boundary conditions and Rudy and Stikwerda
nonreflecting boundary condition). The ‘‘improved’’ artificial boundary conditions
of order (1, 1) provide the best results. At the discretization level, it may be necessary



36 LOÏC TOURRETTE

to introduce extra relations to close the set of artificial boundary conditions and
we have proposed a rigorous method for their definition.

There is another approach to the problem of artificial boundary conditions.
Introduced for the wave equations by Engquist and Majda and also by Halpern, it
consists in working directly on the discretized equations (i.e., on a scheme). This
approach has been successfully applied by the author to the linearized compressible
Navier–Stokes equations in [23]. The asymptotic expansions with respect to the
viscosity are replaced by developments under the assumption of low time frequen-
cies. Moreover, the method directly provides the right number of boundary condi-
tions. The results of this work will hopefully be presented in a forthcoming article.
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